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TRES-package Tensor Regression with Envelope Structure

Description

Provides the ordinary least squares estimator and the three types of tensor envelope structured es-
timators for tensor response regression (TRR) and tensor predictor regression (TPR) models. The
three types of tensor envelope structured approaches are generic and can be applied to any envelope
estimation problems. The full Grassmannian (FG) optimization is often associated with likelihood-
based estimation but requires heavy computation and good initialization; the one-directional op-
timization approaches (1D and ECD algorithms) are faster, stable and does not require carefully
chosen initial values; the SIMPLS-type is motivated by the partial least squares regression and is
computationally the least expensive.

Author(s)

Wenjing Wang, Jing Zeng and Xin Zhang

References

Zeng J., Wang W., Zhang X. (2021) TRES: An R Package for Tensor Regression and Envelope
Algorithms. Journal of Statistical Software, 99(12), 1-31. doi:10.18637/jss.v099.i12.

Cook, R.D. and Zhang, X. (2016). Algorithms for envelope estimation. Journal of Computational
and Graphical Statistics, 25(1), pp.284-300.

Li, L. and Zhang, X. (2017). Parsimonious tensor response regression. Journal of the American
Statistical Association, 112(519), pp.1131-1146.

Zhang, X. and Li, L. (2017). Tensor envelope partial least-squares regression. Technometrics,
59(4), pp.426-436.

Cook, R.D. and Zhang, X. (2018). Fast envelope algorithms. Statistica Sinica, 28(3), pp.1179-1197.

See Also

Useful links:

• https://github.com/leozeng15/TRES

• Report bugs at https://github.com/leozeng15/TRES/issues

Examples

library(TRES)
## Load data "bat"
data("bat")
x <- bat$x
y <- bat$y

## 1. Fitting with OLS method.
fit_ols <- TRR.fit(x, y, method="standard")

https://github.com/leozeng15/TRES
https://github.com/leozeng15/TRES/issues


4 bat

## Print cofficient
coef(fit_ols)

## Print the summary
summary(fit_ols)

## Extract the mean squared error, p-value and standard error from summary
summary(fit_ols)$mse
summary(fit_ols)$p_val
summary(fit_ols)$se

## Make the prediction on the original dataset
predict(fit_ols, x)

## Draw the plots of two-way coefficient tensor (i.e., matrix) and p-value tensor.
plot(fit_ols)

## 2. Fitting with 1D envelope algorithm. (time-consuming)

fit_1D <- TRR.fit(x, y, u = c(14,14), method="1D") # pass envelope rank (14,14)
coef(fit_1D)
summary(fit_1D)
predict(fit_1D, x)
plot(fit_1D)

bat Bat simulated data

Description

Synthetic data generated from tensor response regression (TRR) model. Each response observation
is a two-dimensional image, and each binary predictor observation takes values 0 and 1, representing
two groups.

Usage

data("bat")

Format

A list consisting of four components:

x A 1× 20 matrix, each entry takes values 0 and 1, representing two groups.

y A 64× 64× 20 tensor, each matrix y@data[,,i] represents an image.

coeffiicients A 64× 64× 1 tensor with the bat pattern.

Gamma A list consisting of two 64× 14 envelope basis.
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Details

The dataset is generated from the tensor response regression (TRR) model:

Yi = BXi + ϵi, i = 1, . . . , n,

where n = 20 and the regression coefficient B ∈ R64×64 is a given image with rank 14, rep-
resenting the mean difference of the response Y between two groups. To make the model con-
form to the envelope structure, we construct the envelope basis Γk and the covariance matrices
Σk, k = 1, 2, of error term as following. With the singular value decomposition of B, namely
B = Γ1ΛΓ

T
2 , we choose the envelope basis as Γk ∈ R64×14, k = 1, 2. Then the envelope di-

mensions are u1 = u2 = 14. We generate another two matrices Ωk ∈ R14×14 = AkA
T
k and

Ω0k ∈ R50×50 = A0kA
T
0k, where Ak ∈ R14×14 and A0k ∈ R50×50 are randomly generated from

Uniform(0,1) elementwise. Then we set the covariance matrices Σk = ΓkΩkΓ
T
k +Γ0kΩ0kΓ

T
0k, fol-

lowed by normalization with their Frobenius norms. We set the first 10 predictors Xi, i = 1, . . . , 10,
as 1 and the rest as 0. The error term is then generated from two-way tensor (matrix) normal distri-
bution TN(0; Σ1,Σ2).

References

Li, L. and Zhang, X., 2017. Parsimonious tensor response regression. Journal of the American
Statistical Association, 112(519), pp.1131-1146.

Examples

## Fit bat dataset with the tensor response regression model
data("bat")
x <- bat$x
y <- bat$y
# Model fitting with ordinary least square.
fit_std <- TRR.fit(x, y, method="standard")
# Draw the coefficient and p-value plots
plot(fit_std)

ECD ECD algorithm for estimating the envelope subspace

Description

Estimate the envelope subspace with specified dimension based on ECD algorithm proposed by
Cook, R. D., & Zhang, X. (2018).

Usage

ECD(M, U, u, ...)
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Arguments

M The p-by-p positive definite matrix M in the envelope objective function.

U The p-by-p positive semi-definite matrix U in the envelope objective function.

u An integer between 0 and n representing the envelope dimension.

... Additional user-defined arguments:

• maxiter: The maximal number of iterations.
• tol: The tolerance used to assess convergence. See the ECD algorithm in

Cook, R. D., & Zhang, X. (2018).

The default values are: maxiter=500; tol=1e-08.

Details

Estimate M-envelope of span(U). The dimension of the envelope is u.

See FGfun for the generic objective function.

The ECD algorithm is similar to 1D algorithm proposed by Cook, R. D., & Zhang, X. (2016). A
fast and stable algorithm is used for solving each individual objective function.

Value

Return the orthogonal basis of the envelope subspace with each column represent the sequential
direction. For example, the first column is the most informative direction.

References

Cook, R.D. and Zhang, X., 2018. Fast envelope algorithms. Statistica Sinica, 28(3), pp.1179-1197.

Examples

##simulate two matrices M and U with an envelope structure#
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_ECD <- ECD(M, U, u=5)
subspace(Gamma_ECD, G)

EEG Electroencephalography (EEG) dataset for alcoholism study.

Description

EEG images data of subjects in alcoholic and control groups.
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Usage

data("EEG")

Format

A list consisting of two components:

x A binary vector with length of 61.
y A 64× 64× 61 tensor, consisting of 61 channels by time EEG images.

Details

The original EEG data contains 77 alcoholic individuals and 45 controls. To reduce the size, we
randomly select 61 samples and obtain 39 alcoholic individuals and 22 controls. Each individual
was measured with 64 electrodes placed on the scalp sampled at 256 Hz for 1 sec, resulting an EEG
image of 64 channels by 256 time points. More information about data collection and some analysis
can be found in Zhang et al. (1995) and Li, Kim, and Altman (2010). To facilitate the analysis, the
data is downsized along the time domain by averaging every four consecutive time points, yielding
a 64 × 64 matrix response.

References

URL: https://archive.ics.uci.edu/ml/datasets/EEG+Database.

Li, L. and Zhang, X., 2017. Parsimonious tensor response regression. Journal of the American
Statistical Association, 112(519), pp.1131-1146.

Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W. and Litke, A., 1995. Event related potentials
during object recognition tasks. Brain research bulletin, 38(6), pp.531-538.

Li, B., Kim, M.K. and Altman, N., 2010. On dimension folding of matrix-or array-valued statistical
objects. The Annals of Statistics, 38(2), pp.1094-1121.

Examples

data("EEG")
x <- EEG$x
y <- EEG$y
## Estimate the envelope dimension, the output should be c(1,1).

u <- TRRdim(x, y)$u
u <- c(1,1)

## Fit the dataset with TRR.fit and draw the coefficient plot and p-value plot
fit_1D <- TRR.fit(x, y, u, method = "1D")
plot(fit_1D, xlab = "Time", ylab = "Channels")

## Uncomment display the plots from different methods.
# fit_ols <- TRR.fit(x, y, method = "standard")
# fit_pls <- TRR.fit(x, y, u, method = "PLS")
# plot(fit_ols, xlab = "Time", ylab = "Channels")
# plot(fit_pls, xlab = "Time", ylab = "Channels")

https://archive.ics.uci.edu/ml/datasets/EEG+Database
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FGfun The Objective function and its gradient

Description

Calculates the objective function and its gradient for estimating the M -envelope of span(U ), where
M is positive definite and U is positive semi-definite.

Usage

FGfun(Gamma, M, U)

Arguments

Gamma Γ matrix in the envelope objective function. A p-by-u matrix.

M The p-by-p positive definite matrix M in the envelope objective function.

U The p-by-p positive semi-definite matrix U in the envelope objective function.

Details

The generic objective function F (Γ) and its gradient G(Γ) are listed below for estimating M -
envelope of span(U ). For the detailed description, see Cook, R. D., & Zhang, X. (2016).

F (Γ) = log |ΓTMΓ|+ log |ΓT (M + U)−1Γ|

G(Γ) = dF/dΓ = 2MΓ(ΓTMΓ)−1 + 2(M + U)−1Γ(ΓT (M + U)−1Γ)−1

Value

F The value of the objective function at Gamma.

G The value of the gradient function at Gamma.

References

Cook, R.D. and Zhang, X., 2016. Algorithms for envelope estimation. Journal of Computational
and Graphical Statistics, 25(1), pp.284-300.
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kroncov The covariance estimation of tensor normal distribution

Description

This function provides the MLE of the covariance matrix of tensor normal distribution, where the
covariance has a separable Kronecker structure, i.e. Σ = Σm ⊗ . . . ⊗ Σ1. The algorithm is a
generalization of the MLE algorithm in Manceur, A. M., & Dutilleul, P. (2013).

Usage

kroncov(Tn, tol = 1e-06, maxiter = 10)

Arguments

Tn A p1 × · · · pm × n matrix, array or tensor, where n is the sample size.

tol The convergence tolerance with default value 1e-6. The iteration terminates
when ||Σ(t+1)

i − Σ
(t)
i ||F < tol for some covariance matrix Σi.

maxiter The maximal number of iterations. The default value is 10.

Details

The individual component covariance matrices Σi, i = 1, . . . ,m are not identifiable. To overcome
the identifiability issue, each matrix Σi is normalized at the end of the iteration such that ||Σi||F =
1. And an overall normalizing constant λ is extracted so that the overall covariance matrix Σ is
defined as

Σ = λΣm ⊗ · · · ⊗ Σ1.

If Tn is a p×n design matrix for a multivariate random variable, then lambda = 1 and S is a length-
one list containing the sample covariance matrix.

Value

lambda The normalizing constant.

S A matrix list, consisting of each normalized covariance matrix Σ1, . . . ,Σm.

References

Manceur, A.M. and Dutilleul, P., 2013. Maximum likelihood estimation for the tensor normal
distribution: Algorithm, minimum sample size, and empirical bias and dispersion. Journal of Com-
putational and Applied Mathematics, 239, pp.37-49.
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manifold1D Estimate the envelope subspace (ManifoldOptim 1D)

Description

The 1D algorithm (Cook and Zhang 2016) implemented with Riemannian manifold optimization
from R package ManifoldOptim.

Usage

manifold1D(M, U, u, ...)

Arguments

M The p-by-p positive definite matrix M in the envelope objective function.

U The p-by-p positive semi-definite matrix U in the envelope objective function.

u An integer between 0 and n representing the envelope dimension.

... Additional user-defined arguments:

• maxiter: The maximal number of iterations.
• tol: The tolerance used to assess convergence. See Huang et al. (2018) for

details on how this is used.
• method: The name of optimization method supported by R package Mani-

foldOptim.
– "LRBFGS": Limited-memory RBFGS
– "LRTRSR1": Limited-memory RTRSR1
– "RBFGS": Riemannian BFGS
– "RBroydenFamily": Riemannian Broyden family
– "RCG": Riemannian conjugate gradients
– "RNewton": Riemannian line-search Newton
– "RSD": Riemannian steepest descent
– "RTRNewton": Riemannian trust-region Newton
– "RTRSD": Riemannian trust-region steepest descent
– "RTRSR1": Riemannian trust-region symmetric rank-one update
– "RWRBFGS": Riemannian BFGS

• check: Logical value. Should internal manifold object check inputs and
print summary message before optimization.

The default values are: maxiter = 500; tol = 1e-08; method = "RCG"; check
= FALSE.

Details

Estimate M-envelope of span(U). The dimension of the envelope is u.
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Value

Return the estimated orthogonal basis of the envelope subspace.

References

Cook, R.D. and Zhang, X., 2016. Algorithms for envelope estimation. Journal of Computational
and Graphical Statistics, 25(1), pp.284-300.

Huang, W., Absil, P.A., Gallivan, K.A. and Hand, P., 2018. ROPTLIB: an object-oriented C++
library for optimization on Riemannian manifolds. ACM Transactions on Mathematical Software
(TOMS), 44(4), pp.1-21.

See Also

MenvU_sim, subspace

Examples

## Simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_1D <- manifold1D(M, U, u = 5)
subspace(Gamma_1D, G)

manifoldFG Estimate the envelope subspace (ManifoldOptim FG)

Description

The FG algorithm (Cook and Zhang 2016) implemented with Riemannian manifold optimization
from R package ManifoldOptim.

Usage

manifoldFG(M, U, u, Gamma_init = NULL, ...)

Arguments

M The p-by-p positive definite matrix M in the envelope objective function.

U The p-by-p positive semi-definite matrix U in the envelope objective function.

u An integer between 0 and n representing the envelope dimension. Ignored if
Gamma_init is provided.

Gamma_init Initial envelope subspace basis. The default value is the estimator from manifold1D(M,
U, u).
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... Additional user-defined arguments:
• maxiter: The maximal number of iterations.
• tol: The tolerance used to assess convergence. See Huang et al. (2018) for

details on how this is used.
• method: The name of optimization method supported by R package Mani-

foldOptim
– "LRBFGS": Limited-memory RBFGS
– "LRTRSR1": Limited-memory RTRSR1
– "RBFGS": Riemannian BFGS
– "RBroydenFamily": Riemannian Broyden family
– "RCG": Riemannian conjugate gradients
– "RNewton": Riemannian line-search Newton
– "RSD": Riemannian steepest descent
– "RTRNewton": Riemannian trust-region Newton
– "RTRSD": Riemannian trust-region steepest descent
– "RTRSR1": Riemannian trust-region symmetric rank-one update
– "RWRBFGS": Riemannian BFGS

• check: Logical value. Should internal manifold object check inputs and
print summary message before optimization.

The default values are: maxiter = 500; tol = 1e-08; method = "RCG"; check
= FALSE.

Details

Estimate M-envelope of span(U). The dimension of the envelope is u.

Value

Return the estimated orthogonal basis of the envelope subspace.

References

Cook, R.D. and Zhang, X., 2016. Algorithms for envelope estimation. Journal of Computational
and Graphical Statistics, 25(1), pp.284-300.

Huang, W., Absil, P.A., Gallivan, K.A. and Hand, P., 2018. ROPTLIB: an object-oriented C++
library for optimization on Riemannian manifolds. ACM Transactions on Mathematical Software
(TOMS), 44(4), pp.1-21.

Examples

##simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p=20, u=5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_FG <- manifoldFG(M, U, u=5)
subspace(Gamma_FG, G)
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MenvU_sim Generate matrices M and U

Description

This function generates the matrices M and U with envelope structure.

Usage

MenvU_sim(
p,
u,
Omega = NULL,
Omega0 = NULL,
Phi = NULL,
jitter = FALSE,
wishart = FALSE,
n = NULL

)

Arguments

p Dimension of p-by-p matrix M .

u The envelope dimension. An integer between 0 and p.

Omega The positive definite matrix Ω in M = ΓΩΓT + Γ0Ω0Γ
T
0 . The default is Ω =

AAT where the elements in A are generated from Uniform(0,1) distribution.

Omega0 The positive definite matrix Ω0 in M = ΓΩΓT +Γ0Ω0Γ
T
0 . The default is Ω0 =

AAT where the elements in A are generated from Uniform(0,1) distribution.

Phi The positive definite matrix Φ in U = ΓΦΓT . The default is Φ = AAT where
the elements in A are generated from Uniform(0,1) distribution.

jitter Logical or numeric. If it is numeric, the diagonal matrix diag(jitter, nrow(M),
ncol(M)) is added to matrix M to ensure the positive definiteness of M . If it
is TRUE, then it is set as 1e-5 and the jitter is added. If it is FALSE (default), no
jitter is added.

wishart Logical. If it is TRUE, the sample estimator from Wishart distribution Wp(M/n, n)
and Wp(U/n, n) are generated as the output matrices M and U.

n The sample size. If wishart is FALSE, then n is ignored.

Details

The matrices M and U are in forms of

M = ΓΩΓT + Γ0Ω0Γ
T
0 , U = ΓΦΓT .

The envelope basis Γ is randomly generated from the Uniform (0, 1) distribution elementwise and
then transformed to a semi-orthogonal matrix. Γ0 is the orthogonal completion of Γ.
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In some cases, to guarantee that M is positive definite which is required by the definition of enve-
lope, a jitter should be added to M .

If wishart is TRUE, after the matrices M and U are generated, the samples from Wishart distribution
Wp(M/n, n) and Wp(U/n, n) are output as matrices M and U . If so, n is required.

Value

M The p-by-p matrix M.

U The p-by-p matrix U.

Gamma The p-by-u envelope basis.

References

Cook, R.D. and Zhang, X., 2018. Fast envelope algorithms. Statistica Sinica, 28(3), pp.1179-1197.

Examples

data1 <- MenvU_sim(p = 20, u = 5)
M1 <- data1$M
U1 <- data1$U

# Sample version from Wishart distribution
data2 <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M2 <- data2$M
U2 <- data2$U

oneD_bic Envelope dimension selection based on 1D-BIC

Description

This function selects envelope subspace dimension using 1D-BIC proposed by Zhang, X., & Mai,
Q. (2018). The constrained optimization in the 1D algorithm is based on the line search algorithm
for optimization on manifold. The algorithm is developed by Wen and Yin (2013) and the Matlab
version is in the Matlab package OptM.

Usage

oneD_bic(M, U, n, C = 1, maxdim = 10, ...)

Arguments

M The p-by-p positive definite matrix M in the envelope objective function.

U The p-by-p positive semi-definite matrix U in the envelope objective function.

n The sample size.

C The constant defined in 1D-BIC criterion, the default value is 1.
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maxdim The maximum dimension to consider, maxdim is smaller than p, the default value
is 10.

... Additional user-defined arguments for the line search algorithm:
• maxiter: The maximal number of iterations.
• xtol: The convergence tolerance for the relative changes of the consecutive

iterates w, e.g., ||w(k) − w(k−1)||F /
√
p

• gtol: The convergence tolerance for the gradient of Lagrangian, e.g., ||G(k)−
w(k)(G(t))Tw(t)||F

• ftol: The convergence tolerance for relative changes of the consecutive
objective function values F , e.g., |F (k)−F (k−1)|/(1+ |F (k−1)|). Usually,
max{xtol, gtol} > ftol

The default values are: maxiter=500; xtol=1e-08; gtol=1e-08; ftol=1e-12.

Details

The objective function F (w) and its gradient G(w) in line search algorithm are:

F (w) = log |wTMkw|+ log |wT (Mk + Uk)
−1w|

G(w) = dF/dw = 2(wTMkw)
−1Mkw + 2(wT (Mk + Uk)

−1w)−1(Mk + Uk)
−1w

See Cook, R. D., & Zhang, X. (2016) for more details of the 1D algorithm.

The 1D-BIC criterion is defined as

I(k) =

k∑
j=1

ϕj(ŵj) + Ck log(n)/n, k = 0, 1, . . . , p,

where C > 0 is a constant, ŵ is the 1D solver, the function ϕj is the individual objective function
solved by 1D algorithm, n is the sample size. Then the selected dimension u is the one yielding the
smallest 1D-BIC I(k). See Zhang, X., & Mai, Q. (2018) for more details.

As suggested by Zhang, X., & Mai, Q. (2018), the number C should be set to its default value
C = 1 when there is no additional model assumption or prior information. However, if additional
model assumption or prior information are known, C should be set such that Ck best matches the
degree-of-freedom or total number of free parameters of the model or estimation procedure. For
example, in TRR model where the predictor design matrix is of dimension p × n, C should be set
as p. See Zhang, X., & Mai, Q. (2018) for more details.

Value

bicval The BIC values for different envelope dimensions.
u The dimension selected which corresponds to the smallest BIC values.
Gamma The estimation of envelope subspace basis.

References

Zhang, X. and Mai, Q., 2018. Model-free envelope dimension selection. Electronic Journal of
Statistics, 12(2), pp.2193-2216.

Wen, Z. and Yin, W., 2013. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1-2), pp.397-434.
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See Also

OptM1D, MenvU_sim

Examples

##simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
bic <- oneD_bic(M, U, n = 200)
## visualization
plot(1:10, bic$bicval, type="o", xlab="Envelope Dimension", ylab="BIC values",
main="Envelope Dimension Selection")

OptM1D Estimate the envelope subspace (OptM 1D)

Description

The 1D algorithm to estimate the envelope subspace based on the line search algorithm for op-
timization on manifold. The line search algorithm is developed by Wen and Yin (2013) and the
Matlab version is implemented in the Matlab package OptM.

Usage

OptM1D(M, U, u, ...)

Arguments

M The p-by-p positive definite matrix M in the envelope objective function.

U The p-by-p positive semi-definite matrix U in the envelope objective function.

u An integer between 0 and n representing the envelope dimension.

... Additional user-defined arguments for the line search algorithm:

• maxiter: The maximal number of iterations.
• xtol: The convergence tolerance for the relative changes of the consecutive

iterates w, e.g., ||w(k) − w(k−1)||F /
√
p

• gtol: The convergence tolerance for the gradient of Lagrangian, e.g., ||G(k)−
w(k)(G(t))Tw(t)||F

• ftol: The convergence tolerance for relative changes of the consecutive
objective function values F , e.g., |F (k)−F (k−1)|/(1+ |F (k−1)|). Usually,
max{xtol, gtol} > ftol

The default values are: maxiter=500; xtol=1e-08; gtol=1e-08; ftol=1e-12.
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Details

The objective function F (w) and its gradient G(w) in line search algorithm are:

F (w) = log |wTMkw|+ log |wT (Mk + Uk)
−1w|

G(w) = dF/dw = 2(wTMkw)
−1Mkw + 2(wT (Mk + Uk)

−1w)−1(Mk + Uk)
−1w

See Cook, R. D., & Zhang, X. (2016) for more details of the 1D algorithm.

Value

Return the estimated orthogonal basis of the envelope subspace.

References

Cook, R.D. and Zhang, X., 2016. Algorithms for envelope estimation. Journal of Computational
and Graphical Statistics, 25(1), pp.284-300.

Wen, Z. and Yin, W., 2013. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1-2), pp.397-434.

Examples

## Simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_1D <- OptM1D(M, U, u = 5)
subspace(Gamma_1D, G)

OptMFG Estimate the envelope subspace (OptM FG)

Description

The FG algorithm to estimate the envelope subspace based on the curvilinear search algorithm for
optimization on Stiefel manifold. The curvilinear algorithm is developed by Wen and Yin (2013)
and the Matlab version is implemented in the Matlab package OptM.

Usage

OptMFG(M, U, u, Gamma_init = NULL, ...)
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Arguments

M The p-by-p positive definite matrix M in the envelope objective function.
U The p-by-p positive semi-definite matrix U in the envelope objective function.
u An integer between 0 and n representing the envelope dimension. Ignored if

Gamma_init is provided.
Gamma_init Initial envelope subspace basis. The default value is the estimator from OptM1D(M,

U, u).
... Additional user-defined arguments for the curvilinear search algorithm:

• maxiter: The maximal number of iterations.
• xtol: The convergence tolerance for Γ, e.g., ||Γ(k) − Γ(k−1)||F /

√
p

• gtol: The convergence tolerance for the projected gradient, e.g., ||G(k) −
Γ(k)(G(t))TΓ(t)||F

• ftol: The convergence tolerance for objective function F , e.g., |F (k) −
F (k−1)|/(1 + |F (k−1)|). Usually, max{xtol, gtol} > ftol

The default values are: maxiter=500; xtol=1e-08; gtol=1e-08; ftol=1e-12.

Details

If Gamma_init is provided, then the envelope dimension u = ncol(Gamma_init).
The function OptMFG calls the function OptStiefelGBB internally which implements the curvilinear
search algorithm.
The objective function F (Γ) and its gradient G(Γ) in curvilinear search algorithm are:

F (Γ) = log |ΓTMΓ|+ log |ΓT (M + U)−1Γ|

G(Γ) = dF/dΓ = 2MΓ(ΓTMΓ)−1 + 2(M + U)−1Γ(ΓT (M + U)−1Γ)−1

Value

Return the estimated orthogonal basis of the envelope subspace.

References

Wen, Z. and Yin, W., 2013. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1-2), pp.397-434.

See Also

OptStiefelGBB

Examples

##simulate two matrices M and U with an envelope structure
data <- MenvU_sim(p=20, u=5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_FG <- OptMFG(M, U, u=5)
subspace(Gamma_FG, G)
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OptStiefelGBB Optimization on Stiefel manifold

Description

Curvilinear search algorithm for optimization on Stiefel manifold developed by Wen and Yin (2013).

Usage

OptStiefelGBB(X, fun, opts = NULL, ...)

Arguments

X Initial value to start the optimization. A n by k orthonormal matrix such that
XTX = Ik.

fun The function that returns the objective function value and its gradient. The syn-
tax for fun is fun(X, data1, data2) where data1, data2 are additional data
passed to ....

opts A list specifying additional user-defined arguments for the curvilinear search
algorithm. Some important ones are listed in the following:

• maxiter: The maximal number of iterations.
• xtol: The convergence tolerance for X , e.g., ||X(t) −X(t−1)||F /

√
k.

• gtol: The convergence tolerance for the gradient of the Lagrangian func-
tion, e.g., ||G(t) −X(t)(G(t))TX(t)||F .

• ftol: The convergence tolerance for objective function F , e.g., |F (t) −
F (t−1)|/(1 + |F (t−1)|). Usually, max{xtol, gtol} > ftol.

The default values are: maxiter=500; xtol=1e-08; gtol=1e-08; ftol=1e-12.

... Additional input passed to fun.

Details

The calling syntax is OptStiefelGBB(X, fun, opts, data1, data2), where fun(X, data1, data2)
returns the objective function value and its gradient.

For example, for n by k matrix X , the optimization problem is

minX − tr(XTWX), such that XTX = Ik.

The objective function and its gradient are

F (X) = −tr(XTWX), G(X) = −2WX.

Then we need to provide the function fun(X, W) which returns F (X) and G(X). See Examples
for details.

For more details of the termination rules and the tolerances, we refer the interested readers to Section
5.1 of Wen and Yin (2013).
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Value

X The converged solution of the optimization problem.

out Output information, including estimation error, function value, iteration times
etc.

• nfe: The total number of line search attempts.
• msg: Message: "convergence" | "exceed max iteration".
• feasi: The feasibility of solution: ||XTX − Ik||F .
• nrmG: The convergence criterion based on the projected gradient ||G −
XGTX||F .

• fval: The objective function value F (X) at termination.
• iter: The number of iterations.

References

Wen, Z. and Yin, W., 2013. A feasible method for optimization with orthogonality constraints.
Mathematical Programming, 142(1-2), pp.397-434.

Examples

n <- 1000
k <- 6

# Randomly generated matrix M
W <- matrix(rnorm(n^2), n, n)
W <- t(W) %*% W

# Randomly generated orthonormal initial matrix
X0 <- matrix(rnorm(n*k), n, k)
X0 <- qr.Q(qr(X0))

# The objective function and its gradient
fun <- function(X, W){

F <- - sum(diag(t(X) %*% W %*% X))
G <- - 2*(W %*% X)
return(list(F = F, G = G))

}

# Options list
opts<-list(record = 0, maxiter = 1000, xtol = 1e-5, gtol = 1e-5, ftol = 1e-8)

# Main part
output <- OptStiefelGBB(X0, fun, opts, W)
X <- output$X
out <- output$out
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plot.Tenv Plot coefficients and p-value for Tenv object.

Description

Plot method for object returned from TRR.fit and TPR.fit functions.

Usage

## S3 method for class 'Tenv'
plot(
x,
level = 0.05,
main = paste0("Coefficient plot ", "(", x$method, ")"),
main_p = paste0("P value plot ", "(", x$method, ")"),
xlab = "",
ylab = "",
axes = TRUE,
ask = TRUE,
...

)

Arguments

x An object of class "Tenv", as the ones returned from TPR.fit or TRR.fit.

level The significant level of p-value. Default is 0.05.

main The title of coefficient plot.

main_p The title of p-value plot.

xlab The title of x-axis.

ylab The title of y-axis.

axes A logical value specifying whether the axes should be drawn.

ask A logical value. If it is TRUE (default), user is prompted before the second plot
is shown (if exists).

... Other parameters to be passed to the plotting functions.

Details

coef(x) must be a two-way tensor or a matrix.

Since p-value depend on ĉov
−1{vec(X)} which is unavailable for the ultra-high dimensional vec(X)

in tensor predictor regression (TPR), the p-value plot is not provided for the object returned from
TPR.fit. Therefore, for the object return from TPR.fit, only the coefficients plot is displayed.
And for the object return from TRR.fit, both the coefficients plot and p-value plot are displayed.

main and main_p control the titles of coefficient plot and p-value plot separately. Some other
arguments used in function graphics::image, e.g., xlim, ylim, zlim, col, xaxs, yaxs, etc.,
can be passed to ...
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ask can be set as FALSE if the pause before the second plot is not preferred. If x is an object from
TPR.fit, no pause is enabled.

Value

No return value.

See Also

TRR.fit, TPR.fit

Examples

data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
plot(fit)

## Change the significant level to 0.1
plot(fit, level = 0.1)

PMSE Prediction and mean squared error.

Description

Evaluate the tensor response regression (TRR) or tensor predictor regression (TPR) model through
the mean squared error.

Usage

PMSE(x, y, B)

Arguments

x A predictor tensor, array, matrix or vector.

y A response tensor, array, matrix or vector.

B An coefficient tensor tensor, array, matrix or vector.

Details

There are three situations:

• TRR model: If y is an m-way tensor (array), x should be matrix or vector and B should be
tensor or array.

• TPR model: If x is an m-way tensor (array), y should be matrix or vector and B should be
tensor or array.



PMSE 23

• Other: If x and y are both matrix or vector, B should be matrix. In this case, the prediction is
calculated as pred = B*X.

In any cases, users are asked to ensure the dimensions of x, y and B match. See TRRsim and TPRsim
for more details of the TRR and TPR models.

Let Ŷi denote each prediction, then the mean squared error is defined as 1/n
∑n

i=1 ||Yi − Ŷi||2F ,
where || · ||F denotes the Frobenius norm.

Value

mse The mean squared error.

pred The predictions.

See Also

TRRsim, TPRsim.

Examples

## Dataset in TRR model
r <- c(10, 10, 10)
u <- c(2, 2, 2)
p <- 5
n <- 100
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y

# Fit data with TRR.fit
fit_std <- TRR.fit(x, y, method="standard")
result <- PMSE(x, y, fit_std$coefficients)
## Dataset in TPR model
p <- c(10, 10, 10)
u <- c(1, 1, 1)
r <- 5
n <- 200
dat <- TPRsim(p = p, r = r, u = u, n = n)
x <- dat$x
y <- dat$y

# Fit data with TPR.fit
fit_std <- TPR.fit(x, y, u, method="standard")
result <- PMSE(x, y, fit_std$coefficients)



24 simplsMU

predict.Tenv Predict method for Tenv object.

Description

Predict response for the object returned from TRR.fit and TPR.fit functions.

Usage

## S3 method for class 'Tenv'
predict(object, newdata, ...)

Arguments

object An object of class "Tenv", as the ones returned from TPR.fit or TRR.fit.

newdata The data to be used for prediction. It can be a vector, a matrix or a tensor if
object is returned fromTRR.fit, and can be a matrix or a tensor if object is
returned from TPR.fit.

... Additional arguments. No available arguments exist in this version.

Value

Return the predicted response.

Note

If newdata is missing, the fitted response from object is returned.

Examples

data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
predict(fit, x)

simplsMU SIMPLS-type algorithm for estimating the envelope subspace

Description

This algorithm is a generalization of the SIMPLS algorithm in De Jong, S. (1993). See Cook
(2018) Section 6.5 for more details of this generalized moment-based envelope algorithm; see Cook,
Helland, and Su (2013) for a connection between SIMPLS and the predictor envelope in linear
model.
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Usage

simplsMU(M, U, u)

Arguments

M The p-by-p positive definite matrix M in the envelope objective function.

U The p-by-p positive semi-definite matrix U in the envelope objective function.

u An integer between 0 and n representing the envelope dimension.

Value

Returns the estimated orthogonal basis of the envelope subspace.

References

De Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemomet-
rics and intelligent laboratory systems, 18(3), pp.251-263.

Cook, R.D., Helland, I.S. and Su, Z., 2013. Envelopes and partial least squares regression. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 75(5), pp.851-877.

Cook, R.D., 2018. An introduction to envelopes: dimension reduction for efficient estimation in
multivariate statistics (Vol. 401). John Wiley & Sons.

Examples

##simulate two matrices M and U with an envelope structure#
data <- MenvU_sim(p = 20, u = 5, wishart = TRUE, n = 200)
M <- data$M
U <- data$U
G <- data$Gamma
Gamma_pls <- simplsMU(M, U, u=5)
subspace(Gamma_pls, G)

square Square simulated data

Description

Synthetic data generated from tensor predictor regression (TPR) model. Each response observation
is univariate, and each predictor observation is a matrix.

Usage

data("square")
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Format

A list consisting of four components:

x A 32× 32× 200 tensor, each matrix x@data[,,i] represents a predictor observation.

y A 1× 200 matrix, each entry represents a response observation.

coefficients A 32× 32× 1 tensor with a square pattern.

Gamma A list consisting of two 32× 2 envelope basis.

Details

The dataset is generated from the tensor predictor regression (TPR) model:

Yi = B(m+1)vec(Xi) + ϵi, i = 1, . . . , n,

where n = 200 and the regression coefficient B ∈ R32×32 is a given image with rank 2, which
has a square pattern. All the elements of the coefficient matrix B are either 0.1 or 1. To make the
model conform to the envelope structure, we construct the envelope basis Γk and the covariance
matrices Σk, k = 1, 2, of predictor X as following. With the singular value decomposition of B,
namely B = Γ1ΛΓ

T
2 , we choose the envelope basis as Γk ∈ R32×2, k = 1, 2. Then the envelope

dimensions are u1 = u2 = 2. We set matrices Ωk = I2 and Ω0k = 0.01I30, k = 1, 2. Then we
generate the covariance matrices Σk = ΓkΩkΓ

T
k + Γ0kΩ0kΓ

T
0k, followed by normalization with

their Frobenius norms. The predictor Xi is then generated from two-way tensor (matrix) normal
distribution TN(0; Σ1,Σ2). And the error term ϵi is generated from standard normal distribution.

References

Zhang, X. and Li, L., 2017. Tensor envelope partial least-squares regression. Technometrics, 59(4),
pp.426-436.

Examples

## Fit square dataset with the tensor predictor regression model
data("square")
x <- square$x
y <- square$y
# Model fitting with ordinary least square.
fit_std <- TPR.fit(x, y, method="standard")
# Draw the coefficient plot.
plot(fit_std)
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std_err Elementwise standard error.

Description

Calculates the elementwise standard error for the object returned from TRR.fit. The standard error
for the object returned from TPR.fit is unavailable.

Usage

std_err(object)

Arguments

object an object of class "Tenv", as the ones returned from TRR.fit.

Value

The standard error tensor is returned.

Note

The function only supports the object returned from TRR.fit since there is no standard error for the
object returned from TPR.fit.

Examples

data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
std_err(fit)

subspace The distance between two subspaces.

Description

This function calculates the distance between the two subspaces with equal dimensions span(A)
and span(B), where A ∈ Rp×u and B ∈ Rp×u are the basis matrices of two subspaces. The
distance is defined as

∥PA − PB∥F /
√
2d,

where P is the projection matrix onto the given subspace with the standard inner product, and d is
the common dimension.
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Usage

subspace(A, B)

Arguments

A A p-by-u full column rank matrix.

B A p-by-u full column rank matrix.

Value

Returns a distance metric that is between 0 and 1

summary.Tenv Summarize method for Tenv object.

Description

Summary method for object returned from TRR.fit and TPR.fit functions.

Usage

## S3 method for class 'Tenv'
summary(object, ...)

## S3 method for class 'summary.Tenv'
print(x, ...)

Arguments

object An object of class "Tenv", as the ones returned from TPR.fit or TRR.fit.

... Additional arguments. No available arguments exist in this version.

x An object of class "summary.Tenv", usually, a result of a call to summary.Tenv.

Details

Extract call, method, coefficients, residuals, Gamma from object. And append mse, p-value
and the standard error of estimated coefficient.

The mean squared error mse is defined as 1/n
∑n

i=1 ||Yi − Ŷi||2F , where Ŷi is the prediction and
|| · ||F is the Frobenius norm of tensor.

Since the p-value and standard error depend on the estimation of cov−1(vec(X)) which is unavail-
able for the ultra-high dimensional vec(X) in tensor predictor regression (TPR), the two statistics
are only provided for the object returned from TRR.fit.

print.summary.Tenv provides a more readable form of the statistics contained in summary.Tenv.
If object is returned from TRR.fit, then p-val and se are also returned.
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Value

Return object with additional components

call The matched call.

method The implemented method.

n The sample size.

xdim The dimension of predictor.

ydim The dimension of response.

coefficients The tensor coefficients estimated from TPR.fit or TRR.fit.

residuals The residuals, which equals to the response minus the fitted values.

Gamma A list of envelope subspace basis.

mse The mean squared error. The mean squared Frobenius norm of the difference
between each response Yi and fitted value Ŷi.

p_val The p-value for coefficients. Only for the object returned from TRR.fit.

se The standard error for coefficients. Only for the object returned from TRR.fit.

See Also

Fitting functions TRR.fit, TPR.fit.

Examples

data("bat")
x <- bat$x
y <- bat$y
fit <- TRR.fit(x, y, method="standard")
##print summary
summary(fit)

##Extract the p-value and standard error from summary
summary(fit)$p_val
summary(fit)$se

Tenv_Pval The p-value and standard error of coefficient in tensor response re-
gression (TRR) model.

Description

Obtain p-value of each element in the tensor regression coefficient estimator. Two-sided t-tests
are implemented on the coefficient estimator, where asymptotic covariance of the OLS estimator is
used.
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Usage

Tenv_Pval(x, y, Bhat)

Arguments

x The response tensor instance r1 × r2 × · · · × rm.

y A vector predictor of dimension p.

Bhat The estimator of tensor regression coefficient.

The p-value and the standard error of estimated coefficient are not provided
for tensor predictor regression since they depend on ĉov

−1{vec(X)} which is
unavailable due to the ultra-high dimension of vec(X).

Value

p_ols The p-value tensor of OLS estimator.

p_val The p-value tensor of Bhat.

se The standard error tensor of Bhat.

Examples

## Use dataset bat
data("bat")
x <- bat$x
y <- bat$y
fit_std <- TRR.fit(x, y, method="standard")
Tenv_Pval(x, y, fit_std$coefficients)

TPR.fit Tensor predictor regression

Description

This function is used for estimation of tensor predictor regression. The available method including
standard OLS type estimation, PLS type of estimation as well as envelope estimation with FG, 1D
and ECD approaches.

Usage

TPR.fit(x, y, u, method=c('standard', 'FG', '1D', 'ECD', 'PLS'), Gamma_init = NULL)
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Arguments

x The predictor tensor instance of dimension p1×p2×· · ·×pm×n, where n is the
sample size. Array with the same dimensions and matrix with dimension p× n
are acceptable. If y is missing, x should be a list or an environment consisting
of predictor and response datasets.

y The response matrix of dimension r × n, where n is the sample size. Vector of
length n is acceptable.

u The dimension of envelope subspace. u = (u1, · · · , um). Used for methods
"FG", "1D", "ECD" and "PLS". User can use TPRdim to select dimension.

method The method used for estimation of tensor response regression. There are four
possible choices.

• "standard": The standard OLS type estimation.
• "FG": Envelope estimation with full Grassmannian (FG) algorithm.
• "1D": Envelope estimation with one dimensional optimization approaches

by 1D algorithm.
• "ECD": Envelope estimation with one dimensional optimization approaches

by ECD algorithm.
• "PLS": The SIMPLS-type estimation without manifold optimization.

Gamma_init A list specifying the initial envelope subspace basis for "FG" method. By de-
fault, the estimators given by "1D" algorithm is used.

Details

Please refer to Details part of TPRsim for the description of the tensor predictor regression model.

Value

TPR.fit returns an object of class "Tenv".

The function summary (i.e., summary.Tenv) is used to print the summary of the results, including
additional information, e.g., the p-value and the standard error for coefficients, and the prediction
mean squared error.

The functions coefficients, fitted.values and residuals can be used to extract different fea-
tures returned from TPR.fit.

The function plot (i.e., plot.Tenv) plots the two-dimensional coefficients and p-value for object
of class "Tenv".

The function predict (i.e., predict.Tenv) predicts response for the object returned from TPR.fit
function.

x The original predictor dataset.

y The original response dataset.

call The matched call.

method The implemented method.

coefficients The estimation of regression coefficient tensor.

Gamma The estimation of envelope subspace basis.
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Sigma A lists of estimated covariance matrices at each mode for the tensor predictors.

fitted.values The fitted response matrix.

residuals The residuals matrix.

References

Zhang, X. and Li, L., 2017. Tensor envelope partial least-squares regression. Technometrics, 59(4),
pp.426-436.

See Also

summary.Tenv for summaries, calculating mean squared error from the prediction.

plot.Tenv(via graphics::image) for drawing the two-dimensional coefficient plot.

predict.Tenv for prediction.

The generic functions coef, residuals, fitted.

TPRdim for selecting the dimension of envelope by cross-validation.

TPRsim for generating the simulated data used in tensor prediction regression.

The simulated data square used in tensor predictor regression.

Examples

# The dimension of predictor
p <- c(10, 10, 10)
# The envelope dimensions u.
u <- c(1, 1, 1)
# The dimension of response
r <- 5
# The sample size
n <- 200

# Simulate the data with TPRsim.
dat <- TPRsim(p = p, r = r, u = u, n = n)
x <- dat$x
y <- dat$y
B <- dat$coefficients

fit_std <- TPR.fit(x, y, method="standard")
fit_FG <- TPR.fit(x, y, u, method="FG")
fit_pls <- TPR.fit(x, y, u, method="PLS")

rTensor::fnorm(B-stats::coef(fit_std))
rTensor::fnorm(B-stats::coef(fit_FG))
rTensor::fnorm(B-stats::coef(fit_pls))

## ----------- Pass a list or an environment to x also works ------------- ##
# Pass a list to x
l <- dat[c("x", "y")]
fit_std_l <- TPR.fit(l, method="standard")
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# Pass an environment to x
e <- new.env()
e$x <- dat$x
e$y <- dat$y
fit_std_e <- TPR.fit(e, method="standard")

## ----------- Use dataset "square" included in the package ------------- ##
data("square")
x <- square$x
y <- square$y
fit_std <- TPR.fit(x, y, method="standard")

TPRdim Envelope dimension by cross-validation for tensor predictor regres-
sion (TPR).

Description

Select the envelope dimension by cross-validation for tensor predictor regression.

Usage

TPRdim(x, y, maxdim = 10, nfolds = 5)

Arguments

x The predictor tensor instance of dimension p1 × p2 × · · · × pm × n, where n
is the sample size. Array with the same dimensions and matrix with dimension
p× n are acceptable.

y The response matrix of dimension r × n, where n is the sample size. Vector of
length n is acceptable.

maxdim The largest dimension to be considered for selection.

nfolds Number of folds for cross-validation.

Details

According to Zhang and Li (2017), the dimensions of envelopes at each mode are assumed to be
equal, so the u returned is a single value representing the equal envelope dimension.

For each dimension u in 1:maxdim, we obtain the prediction

Ŷi = B̂(m+1)vec(Xi)

for each predictor Xi in the k-th testing dataset, k = 1, . . . ,nfolds, where B̂ is the estimated
coefficient based on the k-th training dataset. And the mean squared error for the k-th testing
dataset is defined as

1/nk

nk∑
i=1

||Yi − Ŷi||2F ,
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where nk is the sample size of the k-th testing dataset and || · ||F denotes the Frobenius norm. Then,
the average of nfolds mean squared error is recorded as cross-validation mean squared error for
the dimension u.

Value

mincv The minimal cross-validation mean squared error.

u The envelope subspace dimension selected.

References

Zhang, X. and Li, L., 2017. Tensor envelope partial least-squares regression. Technometrics, 59(4),
pp.426-436.

See Also

TPRsim.

Examples

# The dimension of predictor
p <- c(10, 10, 10)
# The envelope dimensions u.
u <- c(1, 1, 1)
# The dimension of response
r <- 5
# The sample size
n <- 200
dat <- TPRsim(p = p, r = r, u = u, n = n)
x <- dat$x
y <- dat$y
TPRdim(x, y, maxdim = 5)

## Use dataset square. (time-consuming)

data("square")
x <- square$x
y <- square$y
# check the dimension of x
dim(x)
# use 32 as the maximal envelope dimension
TPRdim(x, y, maxdim=32)
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TPRsim Generate simulation data for tensor predictor regression (TPR)

Description

This function is used to generate simulation data used in tensor prediction regression.

Usage

TPRsim(p, r, u, n)

Arguments

p The dimension of predictor, a vector in the form of (p1, · · · , pm).

r The dimension of response, a scale.

u The structural dimension of envelopes at each mode, a vector with the same
length as p.

n The sample size.

Details

The tensor predictor regression model is of the form,

Y = B(m+1)vec(X) + ϵ

where response Y ∈ Rr, predictor X ∈ Rp1×···×pm , B ∈∈ Rp1×···×pm×r and the error term is
multivariate normal distributed. The predictor is tensor normal distributed,

X ∼ TN(0; Σ1, . . . ,Σm)

According to the tensor envelope structure, we have

B = [Θ; Γ1, . . . ,Γm, Ip],

Σk = ΓkΩkΓ
T
k + Γ0kΩ0kΓ

T
0k,

for some Θ ∈ Ru1×···×um×p, Ωk ∈ Ruk×uk and Ω0k ∈∈ R(pk−uk)×(pk−uk), k = 1, . . . ,m.

Value

x The predictor of dimension p1 × · · · × pm × n.

y The response of dimension r × n.

Gamma A list of envelope subspace basis of dimension pk × uk, k = 1, . . . ,m.

coefficients The tensor coefficients of dimension p1 × · · · × pm × r.

Sigma A lists of estimated covariance matrices at each mode for the tensor predictors,
i.e., Σ1, . . . ,Σm.

p, r, u The input p,r,u.
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Note

The length of p must match that of u, and each element of u must be less than the corresponding
element in p.

References

Zhang, X. and Li, L., 2017. Tensor envelope partial least-squares regression. Technometrics, 59(4),
pp.426-436.

See Also

TPR.fit, TRRsim.

Examples

p <- c(10, 10, 10)
u <- c(1, 1, 1)
r <- 5
n <- 200
dat <- TPRsim(p = p, r = r, u = u, n = n)
x <- dat$x
y <- dat$y
fit_std <- TPR.fit(x, y, method="standard")

TRR.fit Tensor response regression

Description

This function is used for estimation of tensor response regression. The available method including
standard OLS type estimation, PLS type of estimation as well as envelope estimation with FG, 1D
and ECD approaches.

Usage

TRR.fit(x, y, u, method=c('standard', 'FG', '1D', 'ECD', 'PLS'), Gamma_init = NULL)

Arguments

x The predictor matrix of dimension p × n. Vector of length n is acceptable. If
y is missing, x should be a list or an environment consisting of predictor and
response datasets.

y The response tensor instance with dimension r1 × r2 × · · · × rm × n, where n
is the sample size. Array with the same dimensions and matrix with dimension
r × n are acceptable.

u The dimension of envelope subspace. u = (u1, · · · , um). Used for methods
"FG", "1D", "ECD" and "PLS". User can use TRRdim to select dimension.
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method The method used for estimation of tensor response regression. There are four
possible choices.

• "standard": The standard OLS type estimation.
• "FG": Envelope estimation with full Grassmannian (FG) algorithm.
• "1D": Envelope estimation with one dimensional optimization approaches

by 1D algorithm.
• "ECD": Envelope estimation with one dimensional optimization approaches

by ECD algorithm.
• "PLS": The SIMPLS-type estimation without manifold optimization.

Gamma_init A list specifying the initial envelope subspace basis for "FG" method. By de-
fault, the estimators given by "1D" algorithm is used.

Details

Please refer to Details part of TRRsim for the description of the tensor response regression model.

When samples are insufficient, it is possible that the estimation of error covariance matrix Sigma is
not available. However, if using ordinary least square method (method = "standard"), as long as
sample covariance matrix of predictor x is nonsingular, coefficients, fitted.values, residuals
are still returned.

Value

TRR.fit returns an object of class "Tenv".

The function summary (i.e., summary.Tenv) is used to print the summary of the results, including
additional information, e.g., the p-value and the standard error for coefficients, and the prediction
mean squared error.

The functions coefficients, fitted.values and residuals can be used to extract different fea-
tures returned from TRR.fit.

The function plot (i.e., plot.Tenv) plots the two-dimensional coefficients and p-value for object
of class "Tenv".

The function predict (i.e., predict.Tenv) predicts response for the object returned from TRR.fit
function.

x The original predictor dataset.

y The original response dataset.

call The matched call.

method The implemented method.

coefficients The estimation of regression coefficient tensor.

Gamma The estimation of envelope subspace basis.

Sigma A lists of estimated covariance matrices at each mode for the error term.

fitted.values The fitted response tensor.

residuals The residuals tensor.
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References

Li, L. and Zhang, X., 2017. Parsimonious tensor response regression. Journal of the American
Statistical Association, 112(519), pp.1131-1146.

See Also

summary.Tenv for summaries, calculating mean squared error from the prediction.

plot.Tenv(via graphics::image) for drawing the two-dimensional coefficient plot and p-value
plot.

predict.Tenv for prediction.

The generic functions coef, residuals, fitted.

TRRdim for selecting the dimension of envelope by information criteria.

TRRsim for generating the simulated data used in tensor response regression.

The simulated data bat used in tensor response regression.

Examples

# The dimension of response
r <- c(10, 10, 10)
# The envelope dimensions u.
u <- c(2, 2, 2)
# The dimension of predictor
p <- 5
# The sample size
n <- 100

# Simulate the data with TRRsim.
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y
B <- dat$coefficients

fit_std <- TRR.fit(x, y, method="standard")
fit_fg <- TRR.fit(x, y, u, method="FG")
fit_1D <- TRR.fit(x, y, u, method="1D")
fit_pls <- TRR.fit(x, y, u, method="PLS")
fit_ECD <- TRR.fit(x, y, u, method="ECD")

rTensor::fnorm(B-stats::coef(fit_std))
rTensor::fnorm(B-stats::coef(fit_fg))
rTensor::fnorm(B-stats::coef(fit_1D))
rTensor::fnorm(B-stats::coef(fit_pls))
rTensor::fnorm(B-stats::coef(fit_ECD))

# Extract the mean squared error, p-value and standard error from summary
summary(fit_std)$mse
summary(fit_std)$p_val
summary(fit_std)$se
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## ----------- Pass a list or an environment to x also works ------------- ##
# Pass a list to x
l <- dat[c("x", "y")]
fit_std_l <- TRR.fit(l, method="standard")

# Pass an environment to x
e <- new.env()
e$x <- dat$x
e$y <- dat$y
fit_std_e <- TRR.fit(e, method="standard")

## ----------- Use dataset "bat" included in the package ------------- ##
data("bat")
x <- bat$x
y <- bat$y
fit_std <- TRR.fit(x, y, method="standard")

TRRdim Envelope dimension selection for tensor response regression (TRR)

Description

This function uses the 1D-BIC criterion proposed by Zhang, X., & Mai, Q. (2018) to select envelope
dimensions in tensor response regression. Refer to oneD_bic for more details.

Usage

TRRdim(x, y, C = NULL, maxdim = 10, ...)

Arguments

x The predictor matrix of dimension p× n. Vector of length n is acceptable.

y The response tensor instance with dimension r1 × r2 × · · · × rm × n, where n
is the sample size. Array with the same dimensions and matrix with dimension
r × n are acceptable.

C The parameter passed to oneD_bic. Default is nrow(x) = p.

maxdim The maximum envelope dimension to be considered. Default is 10.

... Additional arguments passed to oneD_bic.

Details

See oneD_bic for more details on the definition of 1D-BIC criterion and on the arguments C and
the additional arguments.

Let B denote the estimated envelope with the selected dimension u, then the prediction is Ŷi =
B×̄(m+1)Xi for each observation. And the mean squared error is defined as 1/n

∑n
i=1 ||Yi− Ŷi||2F ,

where || · ||F denotes the Frobenius norm.
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Value

bicval The minimal BIC values for each mode.

u The optimal envelope subspace dimension (u1, u2, · · · , um).

mse The prediction mean squared error using the selected envelope basis.

References

Li, L. and Zhang, X., 2017. Parsimonious tensor response regression. Journal of the American
Statistical Association, 112(519), pp.1131-1146.

Zhang, X. and Mai, Q., 2018. Model-free envelope dimension selection. Electronic Journal of
Statistics, 12(2), pp.2193-2216.

See Also

oneD_bic, TRRsim.

Examples

# The dimension of response
r <- c(10, 10, 10)
# The envelope dimensions u.
u <- c(2, 2, 2)
# The dimension of predictor
p <- 5
# The sample size
n <- 100

# Simulate the data with TRRsim.
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y

TRRdim(x, y) # The estimated envelope dimensions are the same as u.

## Use dataset bat. (time-consuming)

data("bat")
x <- bat$x
y <- bat$y
# check the dimension of y
dim(y)
# use 32 as the maximal envelope dimension
TRRdim(x, y, maxdim=32)
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TRRsim Generate simulation data for tensor response regression (TRR)

Description

This function is used to generate simulation data used in tensor response regression.

Usage

TRRsim(r, p, u, n)

Arguments

r The dimension of response, a vector with length larger than 2.

p The dimension of predictor, a scale.

u The structural dimension of envelopes at each mode, a vector with the same
length as r.

n The sample size.

Details

The tensor response regression model is of the form,

Y = B×̄(m+1)X + ϵ

where predictor X ∈ Rp, response Y ∈ Rr1×···×rm , B ∈ Rr1×···×rm×p and the error term is tensor
normal distributed as follows,

ϵ ∼ TN(0; Σ1, . . . ,Σm).

According to the tensor envelope structure, we have

B = [Θ; Γ1, . . . ,Γm, Ip],

Σk = ΓkΩkΓ
T
k + Γ0kΩ0kΓ

T
0k,

for some Θ ∈ Ru1×···×um×p, Ωk ∈ Ruk×uk and Ω0k ∈∈ R(pk−uk)×(pk−uk), k = 1, . . . ,m.

Value

x The predictor of dimension p× n.

y The response of dimension r1 × · · · × rm × n.

Gamma The envelope subspace basis of dimension rk × uk, k = 1, . . . ,m.

coefficients The tensor coefficients of dimension r1 × · · · × rm × p.

Sigma A lists of estimated covariance matrices at each mode for the error term, i.e.,
Σ1, . . . ,Σm.

p, r, u The input p,r,u.
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Note

The length of r must match that of u, and each element of u must be less than the corresponding
element in r.

References

Li, L. and Zhang, X., 2017. Parsimonious tensor response regression. Journal of the American
Statistical Association, 112(519), pp.1131-1146.

See Also

TPR.fit, TPRsim.

Examples

r <- c(10, 10, 10)
u <- c(2, 2, 2)
p <- 5
n <- 100
dat <- TRRsim(r = r, p = p, u = u, n = n)
x <- dat$x
y <- dat$y
fit_std <- TRR.fit(x, y, method="standard")

ttt Matrix product of two tensors

Description

Matrix product of two tensors unfolded on the specified modes.

Usage

ttt(x, y, ms)

Arguments

x A tensor instance.
y A tensor instance.
ms The indices of the modes to compute on. A single value or a vector.

Details

Suppose x is a s-way tensor with dimension p1 × . . . × ps and y is a t-way tensor with dimension
r1 × . . .× rt. ms specifies the indices on which the tensors x and y are unfolded as columns. Thus,
ms must be a subset of 1:min{s,t}. Meanwhile, the sizes of the dimensions specified by ms must
match, e.g., if ms = 1:k where k <= min{s,t}, then p1× . . . pk = s1× . . . sk. Let X0 and Y0 denote
the unfolded matrices, the matrix X0 × Y T

0 is returned. See Examples for a better illustration.
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Value

Return the matrix product of tensors x and y.

Examples

x <- rTensor::as.tensor(array(runif(24), c(3, 4, 2)))
y <- rTensor::as.tensor(array(runif(24), c(3, 4, 2)))
z <- ttt(x, y, 1:2)
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